
IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-22
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

94 www.ijdcst.com

Dynamic Security Applications for Detecting DDOS Attacks

Subhani Sayyed1, Smt.SK.M.Almas 2

1 M.Tech(CSE), Vasireddy Venkatadri Institute Of Technology,Guntur, A.P., India.

2Asst. Professor, Vasireddy Venkatadri Institute Of Technology,Guntur, A.P., India.

Abstract: Distributed denial of service (DDoS)

attack works to shut down a particular victim web

server with packet flooding. DDoS attacks evolved

from relatively humble megabit beginnings in 2000

to the largest recent DDoS attacks breaking the 100

Gb/s barrier, for which the majority of ISPs (Internet

Service Provider) today lack an appropriate

infrastructure to mitigate them. The sudden increase

in traffic can cause the server to offer degraded

performance. My Doom devastation on micro soft,

wiki leaks encounter with DDoS barrages is some

examples to highlight the impact. And other major

Internet players like Amazon, CNN, and Yahoo are

no exception. Early discovery of these attacks,

although challenging, is necessary to protect victim

server's network infrastructure resources. Previous

intrusion prevention systems like FireCol although

efficient in thwarting DDoS, its architecture is based

on ISP collaboration and virtual protection rings. We

propose to use an IPS rules(Snort rules) driven DDoS

detection approach that checks various parts of a data

packet and not just the header. This enables the

detection system to eliminate other forms DoS

attacks such as Slow Read DoS attack. Its

effectiveness and low overhead, as well as its support

for incremental deployment in real networks is

demonstrated

I. INTRODUCTION

DDoS attacks are mainly used for flooding a

particular victim with massive traffic and paralyzing

its services [4]. Recent works aim at countering

DDoS attacks by fighting the underlying vector,

which is usually the use of botnet. A botnet is a large

network of compromised machines (bots) controlled

by one entity (the master). The master can launch

synchronized attacks, such as DDoS, by sending

orders to the bots via a Command & Control channel

[2][3] . Unfortunately, detecting a botnet is hard, and

efficient solutions require scanning entities to

participate actively in the botnet itself unlike entities

scanning from a safe distance. [6] A single intrusion

prevention system (IPS) or intrusion detection system

(IDS) can hardly detect such DDoS attacks, unless

they are located very close to the victim. However,

even in that latter case, the IDS/IPS may crash

because it needs to deal with an overwhelming

volume of packets (some flooding attacks reach 10–

100 GB/s). In addition, allowing such huge traffic to

transit through the Internet and only detect/block it at

the host IDS/IPS may severely strain [5][7] Internet

resources. So a collaborated system is required that

can empower the single host based detection and

blocking procedures for an efficient prevention of

DDoS.

To overcome such problems, a new collaborative

system called FireCol was proposed that detects

flooding DDoS attacks as far as possible from the

victim host and as close as possible to the attack

source(s) at the Internet service provider (ISP) level.

[3][6] FireCol relies on a distributed architecture

composed of multiple ISPs forming overlay networks

of protection rings around subscribed customers. The

virtual rings use horizontal communication when the

degree of a potential attack is high. [2] In this way,

the threat is measured based on the overall traffic

bandwidth directed to the customer compared to the

maximum bandwidth it supports. FireCol

Components

 Packet Processor

 Metrics Manager

 Selection Manager

 Score Manager

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-22
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

95 www.ijdcst.com

 Collaboration Manager

FireCol architecture uses the following

algorithms: Packet rate computation using rule

frequencies(collaboration manager) and Mitigation

Shields Deployment. In addition to detecting flooding

DDoS attacks, FireCol also helps in detecting other

flooding scenarios, such as flash crowds, and other

botnet-based DDoS attacks thus offering a better

performance. [14] But, FireCol's defense procedures

requires different ISP's collaboration to form virtual

protection rings which has real time implementation

issues involving total revamp of the architecture.

FireCol's defense procedures (virtual protection rings

notion) are not based on IPS rule structures (Snort

Rules).

In this paper, the proposed system extending

FireCol to support different IPS rule structures will

help FireCol thwart other forms of DoS attacks

especially the latest entrant Slow Read DoS attack.

Proposed system was Snort’s detection system which

is based on rules. Like viruses, most intruder activity

has some sort of signature. Information about these

signatures is used to create Snort rules. These rules in

turn are based on intruder signatures. Snort rules can

be used to check various parts of a data packet not

just the header scanning adapted by prior approaches.

A rule may be used to generate an alert message, log

a message, or, in terms of Snort, pass the data packet,

i.e., drop it silently. Thus enabling a detection system

eliminating other forms DoS attacks such as Slow

Read DoS attack. Snort Based DoS detection system

can be a real time efficient and feasible

implementation that can counter varying DoS attack

forms.

II. RELATED WORK

High bandwidth DDoS attacks consume more

resources with ISP level in DDOs attacks to graceful

degradation of network and being undetectable

[12][13]. Most number of detection schemes was

proposed for current requirement to detection of

DDoS attacks. We propose earlier technique i.e. false

alarm rate by varying tolerance factors in real time

[11]. In this technique we describe the simulation

results using some NS-2 simulations techniques

present in networks. This technique main advantage

is that variable rate attack detection and minimum

false alarms. But False alarms have significant results

in detection of DDOS attacks [12]. We introduce the

network under provisioning in cloud infrastructure

for detecting and avoiding new form of DDOS

attacks. The above comparison techniques are

worked for detection of DDOS attacks. The primary

goal of an attack is to deny in Victim’s access in

particular resources. We provide the framework

detecting the attack and dropping the snooped

attacks. [13] It will forge the attack in IP packet but

we cannot control the hop count in that attack. This

technique can be reduced by identifying the attackers

in learning state. Finally we describe the scalable

solution for detection for DDOS attacks [14]. It is

performed as close to attack sources as possible,

providing a protection to subscribed customers and

saving valuable network resources. Experiments

showed good performance and robustness of FireCol

and highlighted good practices for its configuration.

But FireCol was designed in single IPS Rule

structure. In this paper we introduce the SNORT rule

structure for original source code is available to

anyone at no change. Snort Based DoS detection

system can be a real time efficient and feasible

implementation that can counter varying DoS attack

forms.

III. BACKGROUND

Intrusion detection is a set of techniques and

methods that are used to detect suspicious [2][3]

activity both at the network and host level. Usually

an intrusion detection system captures data from the

network and applies its rules to that data or detects

anomalies in it. Snort is primarily a rule-based IDS,

however input plug-ins are present to detect

anomalies in protocol headers. Snort uses rules stored

in text files that can be modified by a text editor.

Rules are grouped in categories. [6][8] Rules

belonging to each category are stored in separate

files. Snort reads these rules at the start-up time and

builds internal data structures or chains to apply these

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-22
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

96 www.ijdcst.com

rules to captured data. [4] Finding signatures and

using them in rules is a tricky job, since the more

rules use, the more processing power is required to

process captured data in real time. [2] It is important

to implement as many signatures as it can using as

few rules as possible. Snort comes with a rich set of

pre-defined rules to detect intrusion activity and it is

free to add own rules at will. To avoid false alarms,

built-in rules can also remove.

IV. PROPOSED SYSTEM

 SNORT is one of the most popular NIDS.

SNORT is Open Source, which means that the

original program source code is available to anyone

at no charge, and this has allowed many people to

contribute to and analyze the programs construction.

SNORT uses the most common open-source license

known as the GNU General Public License. Snort is

logically divided into multiple components. These

components work together to detect particular attacks

and to generate output in a required format from the

detection system. Snort’s architecture consists of four

basic components:

■ The sniffer

■ The preprocessor

■ The detection engine

■ The output

Packet Sniffer

A packet sniffer is a device (either hardware

or software) used to tap into networks. It works in a

similar fashion to a telephone wiretap, but it’s used

for data networks instead of voice networks. A

network sniffer allows an application or a hardware

device to eavesdrop on data network traffic. In the

case of the Internet, this usually consists of IP traffic,

but in local LANs and legacy networks, it can be

other protocol suites, such as IPX and AppleTalk

traffic. Packet sniffers have various uses:

■ Network analysis and troubleshooting

■ Performance analysis and benchmarking

■ Eaves dropping for clear-text passwords and other

interesting tidbits of data.

Fig 1: Snort Architecture

Preprocessor

A preprocessor takes the raw packets and

checks them against certain plug-ins (like an RPC

plug-in, an HTTP plug-in, and a port scanner plug-

in).These plug-ins check for a certain type of

behavior from the packet. Once the packet is

determined to have a particular type of “behavior,” it

is then sent to the detection engine. Snort supports

many kinds of preprocessors and their attendant plug-

ins, covering many commonly used protocols as well

as larger-view protocol issues such as IP

fragmentation handling, port scanning and flow

control, and deep inspection of richly featured

protocols.

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-22
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

97 www.ijdcst.com

As shown in the above algorithm1, detection

with matching rule structure working procedure as

follows. Initially we are taking original rule set

R={R1,R2,…….Ri} as input. Each rule set

associated with match list with index provided by our

original rule set. Then extended rule set scans each

rule Ei in E and check the matching relations between

original rule set structures with generated rule set. If

matching is done in this relation then we are adding

that client into network. If any rule structures are not

matching with original rule set then we are assigning

that particular client may be act as attacker.

Detection Engine

Once packets have been handled by all

enabled preprocessors, they are handed off to the

detection engine. The detection engine is the meat of

the signature-based IDS in Snort. The detection

engine takes the data that comes from the

preprocessor and its plug-ins, and that data is checked

through a set of rules. If the rules match the data in

the packet, they are sent to the alert processor. The

signature-based IDS function is accomplished by

using various rule sets. The rule sets are grouped by

category (Trojan horses, buffer overflows, access to

various applications) and are updated regularly.

The rules themselves consist of two parts:

■ The rule header The rule header is basically the

action to take (log or alert), type of network packet

(TCP, UDP, ICMP, and so forth), source and

destination IP addresses, and ports

■ The rule option The option is the content in the

packet that should make the packet match the rule.

The detection engine and its rules are the

largest portion (and steepest learning curve) of new

information to learn and understand with Snort. Snort

has a particular syntax that it uses with its rules. Rule

syntax can involve the type of protocol, the content,

the length, the header, and other various elements,

including garbage characters for defining butter

overflow rules. If we want to generate new rules from

existing rules it is known as generalizing SNORT

rules.

Alerting/Logging Component

After the Snort data goes through the

detection engine, it needs to go out somewhere. If the

data matches a rule in the detection engine, an alert is

triggered. Depending upon what the detection engine

finds inside a packet, the packet may be used to log

the activity or generate an alert. Logs are kept in

simple text files, tcp dump- style files or some other

form. Alerts can be sent to a log file, through a

network connection, through UNIX sockets or

Windows Popup (SMB), or SNMP traps. The alerts

can also be stored in an SQL database such as

MySQL and Postgress.

V. PERFORMANCE

Consider an Internet packet that contains a

variation of a known attack, there should be some

automated way to identify the packet as nearly

matching a NIDS attack signature. If a particular

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-22
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

98 www.ijdcst.com

statement has a set of conditions against it, an item

may match some of the conditions. Whereas Boolean

logic would give the value false to the query ’does

this item match the conditions’, our logic could allow

the item to match to a lesser extent rather than not at

all. This principle can be applied when comparing an

Internet packet against a set of conditions in a

SNORT rule. Our hypothesis is that if all but one of

the conditions are met, an alert with a lower priority

can be issued against the Internet packet, as the

packet may contain a variation of a known attack.

While implementation, generalization in the case of

matching network packets against rules, involves

allowing a packet to generate an alert if:

• The conditions in the rule do not all match, yet most

of them do;

• The only conditions that do not match exactly

nearly match.

When implementing generalized rules, the

execution time was 1 second to process and convert

the original 1,325 rules into a total of 6,975 rules.

The generalized Content execution time was 2

seconds to process and convert the same 1,325

original rules, into a total of 18,265 rules. These

execution times would easily be acceptable for most

potential uses, such as each time the SNORT rules

were downloaded for signature updates. The increase

in the number of rules affected the time spent

processing network traffic data as follows:

• Using the original rules, Snort took approx 100

seconds to process 1,635,267 packets;

• Using the generalized (inverted) rules, Snort took

approx 400 seconds to process the same packets;

• Using the generalized content rules, Snort took

approx 1,000 seconds to process the packets. The

change in SNORT’s processing time is an increase of

around four to ten times and roughly in line with the

increase in the number of rules.

Figure 2: Time comparison results for FireCol

and Snort Rule detection systems.

As shown in the above figure, it

distinguishes the comparison results between both

existing and proposed approaches developed in our

application. In our existing approach we have to

develop FireCol technique for detection of Denial-of-

Service attacks in network communication. In this

technique we are not providing any rule structure

process for detection of those attacks present in the

network communication. In this technique we was

developed Intrusion detection system rules structure

for developing network performance with equal

priority values of each node present in the network.

In this section we describe the network

performance results when we are using different rule

structure for detection of Denial-of-Service attacks in

network communication process. For this process we

are developing different Snort rule structures like

DOS, DDOS, Web-Attack, and SCAN. In our

proposed approach we are developing different

classification structure for each node present in

network, and then they are calculating individual

classification time establishing connection for

detecting attacks. Those results were taking more

time when compare to FireCol detection system.

Because FireCol doesn’t provide classification

structure for each client in network.

VI. CONCLUSION & FUTURE WORK

In this paper, the proposed system extending

FireCol to support different IPS rule structures will

IJDCST @ Sep-Oct, Issue- V-2, I-8, SW-22
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

99 www.ijdcst.com

help FireCol thwart other forms of DoS attacks

especially the latest entrant Slow Read DoS attack.

As further future work of FireCol, We Propose

Snort’s detection system which is based on rules.

Like viruses, most intruder activity has some sort of

signature. Information about these signatures is used

to create Snort rules. These rules in turn are based on

intruder signatures. Snort based detection system

consists of several components: Sniffer, preprocessor,

the detection engine, the output/ alert component.

The detection engine makes use of snort rules. Snort

rules can be used to check various parts of a data

packet not just the header scanning adapted by prior

approaches. A rule may be used to generate an alert

message, log a message, or, in terms of Snort, pass

the data packet, i.e., drop it silently. Thus enabling a

detection system eliminating other forms DoS attacks

such as Slow Read DoS attack. Snort Based DoS

detection system can be a real time efficient and

feasible implementation that can counter varying

DoS attack forms. As further improvement of our

proposed work we are developing IDS rule structure

with limited access only, in this efficient results are

generated according to presented rules only. In future

we are developing our what are the rule presented in

IDS we are developing all those rules and organize

DDOS attacks efficiently.

VII. REFERENCES

[1] S Axelsson (2000) ’Intrusion Detection Systems:

A Survey and Taxonomy’, Chalmers University Tech

Report, 99-15.

[2] Proctor, Paul E. The Practical Intrusion Detection

Handbook. New Jersey: Prentice Hall PTR, 2001.

[3] Northcutt, Steven. Network Intrusion Detection,

An Analyst’s Handbook. Indianapolis: New Riders,

1999.

[4] Bace, Rebecca. “An Introduction to Intrusion

Detection and Assessment: for System and Network

Security Management.” ICSA White Paper, 1998.

[5] G. Badishi, A. Herzberg, and I. Keidar, “Keeping

denial-of-service attackers in the dark,” IEEE Trans.

Depend. Secure Comput., vol. 4, no. 3, pp. 191–204,

Jul.–Sep. 2007.

[6] T. Peng, C. Leckie, and K. Ramamohanarao,

“Detecting distributed denial of service attacks by

sharing distributed beliefs,” in Proc. 8th ACISP,

Wollongong, Australia, Jul. 2003, pp. 214–225.

[7] M. Vallentin, R. Sommer, J. Lee, C. Leres, V.

Paxson, and B. Tierney, “The NIDS cluster: Scalable,

stateful network intrusion detection on commodity

hardware,” in Proc. 10th RAID, Sep. 2007, pp. 107–

126.

[8] Sourcefire Inc, M Roesch and C Green (2006)

’SNORT Users Manual - SNORT Release: 2.6.0’,

http://www.snort.org

[9] J Hoagland and S Staniford (2003) ’Viewing IDS

alerts: Lessons from

SnortSnarf’,http://www.silicondefense.com/research/

whitepapers/index.php.

[10] D. Das, U. Sharma, and D. K. Bhattacharyya,

“Detection of HTTP flooding attacks in multiple

scenarios,” in Proc. ACM Int. Conf. Commun.,

Comput. Security, 2011, pp. 517–522.

[11] H. Liu, “A new form of DOS attack in a cloud

and its avoidance mechanism,” in Proc. ACM

Workshop Cloud Comput. Security, 2010, pp. 65–76.

[12] A. Sardana, R. Joshi, and T. hoon Kim,

“Deciding optimal entropic thresholds to calibrate the

detection mechanism for variable rate DDoS attacks

in ISP domain,” in Proc. ISA, Apr. 2008, pp. 270–

275.

[13] I. B.Mopari, S. G. Pukale, and M. L. Dhore,

“Detection of DDoS attack and defense against IP

spoofing,” in Proc. ACM ICAC3, 2009, pp.489–493.

[14] Jéerôme François, Issam Aib, Raouf Boutaba,”

FireCol: A Collaborative Protection Network for the

Detection of Flooding DDoS Attacks”, IEEE 2012

Transaction on Networking,Volume :PP, Issue:99.

http://www.snort.org/

